Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Environ Health Perspect ; 132(4): 47005, 2024 Apr.
Article En | MEDLINE | ID: mdl-38598326

BACKGROUND: Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. OBJECTIVES: This study aims to investigate the impacts of polymer microspheres on tissue metabolism in mice by assessing the microspheres ability to translocate across the gut barrier and enter into systemic circulation. Specifically, we wanted to examine microsphere accumulation in different organ systems, identify concentration-dependent metabolic changes, and evaluate the effects of mixed microsphere exposures on health outcomes. METHODS: To investigate the impact of ingested microspheres on target metabolic pathways, mice were exposed to either polystyrene (5µm) microspheres or a mixture of polymer microspheres consisting of polystyrene (5µm), polyethylene (1-4µm), and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid) (5µm). Exposures were performed twice a week for 4 weeks at a concentration of either 0, 2, or 4mg/week via oral gastric gavage. Tissues were collected to examine microsphere ingress and changes in metabolites. RESULTS: In mice that ingested microspheres, we detected polystyrene microspheres in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolic differences that occurred in the colon, liver, and brain, which showed differential responses that were dependent on concentration and type of microsphere exposure. DISCUSSION: This study uses a mouse model to provide critical insight into the potential health implications of the pervasive issue of plastic pollution. These findings demonstrate that orally consumed polystyrene or mixed polymer microspheres can accumulate in tissues such as the brain, liver, and kidney. Furthermore, this study highlights concentration-dependent and polymer type-specific metabolic changes in the colon, liver, and brain after plastic microsphere exposure. These results underline the mobility within and between biological tissues of MPs after exposure and emphasize the importance of understanding their metabolic impact. https://doi.org/10.1289/EHP13435.


Polystyrenes , Water Pollutants, Chemical , Humans , Animals , Mice , Microspheres , Plastics , Tissue Distribution , Microplastics , Water Pollutants, Chemical/analysis
2.
bioRxiv ; 2023 Jun 03.
Article En | MEDLINE | ID: mdl-37398080

Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. To investigate the impact of ingested MPs on target metabolomic pathways, mice were subjected to either polystyrene microspheres or a mixed plastics (5 µm) exposure consisting of polystyrene, polyethylene and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid). Exposures were performed twice a week for four weeks at a dose of either 0, 2, or 4 mg/week via oral gastric gavage. Our findings demonstrate that, in mice, ingested MPs can pass through the gut barrier, be translocated through the systemic circulation, and accumulate in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolomic changes that occur in the colon, liver and brain which show differential responses that are dependent on dose and type of MPs exposure. Lastly, our study provides proof of concept for identifying metabolomic alterations associated with MPs exposure and adds insight into the potential health risks that mixed MPs contamination may pose to humans.

3.
ACS Earth Space Chem ; 5(6): 1278-1287, 2021 Jun 17.
Article En | MEDLINE | ID: mdl-34308092

We integrated microscopy, spectroscopy, culturing and molecular biology, and aqueous chemistry techniques to evaluate arsenic (As) accumulation in hydroponically grown Schizachyrium scoparium inoculated with endophytic fungi. Schizachyrium scoparium grows in historically contaminated sediment in the Cheyenne River Watershed and was used for laboratory experiments with As(V) ranging from 0 to 2.5 mg L-1 at circumneutral pH. Arsenic accumulation in regional plants has been a community concern for several decades, yet mechanisms affecting As accumulation in plants associated with endophytic fungi remain poorly understood. Colonization of roots by endophytic fungi supported better external and vascular cellular structure, increased biomass production, increased root lengths and increased P uptake, compared to noninoculated plants (p value <0.05). After exposure to As(V), an 80% decrease of As was detected in solution and accumulated mainly in the roots (0.82-13.44 mg kg-1) of noninoculated plants. Endophytic fungi mediated intracellular uptake into root cells and translocation of As. Electron microprobe X-ray mapping analyses detected Ca-P and Mg-P minerals with As on the root surface of exposed plants, suggesting that these minerals could lead to As adsorption on the root surface through surface complexation or coprecipitation. Our findings provide new insights regarding biological and physical-chemical processes affecting As accumulation in plants for risk assessment applications and bioremediation strategies.

4.
ACS Earth Space Chem ; 3(10): 2190-2196, 2019 Oct 17.
Article En | MEDLINE | ID: mdl-31742240

The role of calcium (Ca) on the cellular distribution of U(VI) in Brassica juncea roots and root-to-shoot translocation was investigated using hydroponic experiments, microscopy, and spectroscopy. Uranium accumulated mainly in the roots (727-9376 mg kg-1) after 30 days of exposure to 80 µM dissolved U in water containing 1 mM HCO3 - at different Ca concentrations (0-6 mM) at pH 7.5. However, the concentration of U in the shoots increased 22 times in experiments with 6 mM Ca compared to 0 mM Ca. In the Ca control experiment, transmission electron microscopy-energy-dispersive spectroscopy analyses detected U-P-bearing precipitates in the cortical apoplast of parenchyma cells. In experiments with 0.3 mM Ca, U-P-bearing precipitates were detected in the cortical apoplast and the bordered pits of xylem cells. In experiments with 6 mM Ca, U-P-bearing precipitates aggregated in the xylem with no apoplastic precipitation. These results indicate that Ca in carbonate water inhibits the transport and precipitation of U in the root cortical apoplast and facilitates the symplastic transport and translocation toward shoots. These findings reveal the considerable role of Ca in the presence of carbonate in facilitating the transport of U in plants and present new insights for future assessment and phytoremediation strategies.

...